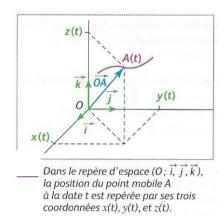
Chap. 10 - Plan de Travail

Mouvements et interactions

I/ ETUDE CINEMATIQUE

La cinématique est l'étude du mouvement indépendamment des causes qui le provoquent. En reliant vitesse et durée de chute, Galilée, au 17^{ème} siècle, fut le premier scientifique à considérer le temps comme une grandeur qui intervient dans la description du mouvement des corps.


C'est également Galilée qui a établi que la description du mouvement des corps dépend de la référence choisie pour l'étudier.

A/ Référentiel et repères

Le est le solide de référence par rapport auquel on étudie le mouvement d'un point.

A un référentiel sont associés :

- ⇒ Un qui donne la position du point.
- ⇒ Un qui permet d'associer une date à chaque position. L'origine des dates est fixée arbitrairement et un dispositif appelé horloge mesure la durée entre deux dates.

B/ Vecteur position

La **position** d'un point A à la date t est donnée par le vecteur position \overrightarrow{OA} dans le repère $(0; \vec{\iota}, \vec{j}, \vec{k})$:

Les notations x(t), y(t) et z(t) précisent que les coordonnées d'un point en mouvement sont des fonctions du temps.

La distance OA (valeur du vecteur) est donné par $\|\overrightarrow{OA}\| = \sqrt{x(t)^2 + y(t)^2 + z(t)^2}$

L'ensemble des positions occupées successivement par le point A au cours du temps constitue la de ce point. Celle-ci dépend du référentiel d'étude.

Exemple : Donner l'équation de la trajectoire et la nature de la trajectoire du mouvement suivant :

$$\overrightarrow{OA} \qquad \begin{cases} x(t) = 3t \\ y(t) = 6t^2 \\ z(t) = 0 \end{cases}$$

C/ Vecteur vitesse

1/ Vecteur vitesse movenne

La vitesse moyenne d'un point A à la date t_2 est donnée par la relation :

direction:
sens:
valeur:
point d'application:

tangente en A A 2

L'utilisation du vecteur position \overrightarrow{OA} permet d'écrire :

2/ Vecteur vitesse instantanée

Il est possible de faire tendre l'intervalle de temps vers 0 et de de calculer une vitesse moyenne sur un temps de plus en plus petit. Les mathématiques nous aident à décrire ce que devient ce « vecteur vitesse moyen » et permette de calculer ces coordonnées.

- Dans un référentiel donné, le vecteur vitesse instantanée du point A à la date t est noté $d\vec{v}/dt$
- Il est obtenu par une opération mathématique appelé dérivation par rapport au temps (cf cours de math).
- Le vecteur vitesse est porté par la tangente à la trajectoire et orienté dans le sens du mouvement.
- L'unité de la valeur de la vitesse est $m. s^{-1}$.

Chap. 10 - Plan de Travail

Mouvements et interactions

3/ Coordonnées du vecteur vitesse

Les coordonnées cartésiennes v_x , v_y et v_z du vecteur vitesse sont les dérivées par rapport au temps des coordonnées du vecteur position.

Avec $\|\overrightarrow{OA}\| = x\vec{i} + y\vec{j} + z\vec{k}$, on a $\vec{v}(t) =$

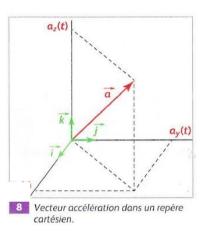
La valeur de la vitesse (norme du vecteur) est :

Application à l'exemple précédent :

D/ Mouvement rectiliane uniforme

Exemple: Dans le repère $(0; \iota \iota , j)$, les coordonnées du vecteur position d'un point A sont x(t) = 2,0t et y(t) = -4,0t + 1,0 (avec x et y en mètre et t en seconde). Donner les coordonnées du vecteur vitesse, la valeur de la vitesse et en déduire le mouvement du point A.

II/ DE LA VITESSE A L'ACCELERATION


Pour rendre compte de la variation de la vitesse par rapport au temps d'un point en mouvement, on défini un vecteur accélération \vec{a} .

A/ Vecteur accélération

Il caractérise les variations du vecteur vitesse.

1/ Définition

• Le vecteur accélération d'un point mobile est à chaque instant égal à la dérivée par rapport au temps du vecteur vitessede ce point :

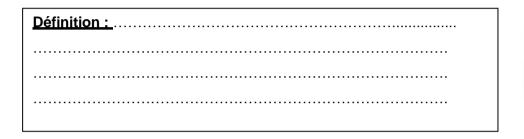
☑ <u>Unité :</u>	
	Les unités
	On note $\frac{d^2x}{dt^2}$ la dérivée seconde
	de la fonction $x(t)$ par rapport à la variable temps t .
	a la variable temps t.
2/ Expressions en coordonnées cartésiennes	

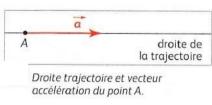
Exemple: \overrightarrow{OM} : : \overrightarrow{V} : : \overrightarrow{a}

Chap. 10 - Plan de Travail

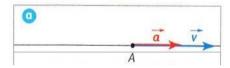
Mouvements et interactions

B/ Différents mouvements


1/ Mouvement rectiligne et uniforme


☑ La trajectoire est

☑ Le vecteur vitesse est


☑ Le vecteur accélération est.....

2/ Mouvement rectiligne uniformément varié

<u>Cas a:</u> Si $\vec{a} \cdot \vec{v} > 0$, alors le mouvement est

<u>Cas b</u>: Si $\vec{a} \cdot \vec{v} < 0$, alors le mouvement est

