Chapitre 7 – Force des acides et des bases

I/ CONSTANTE D'ACIDITE D'UN COUPLE ACIDO-BASIOUE

A/ Constante d'acidité K_A

Les acides qui ne réagissent pas totalement avec l'eau sont dits

Leur réaction sur l'eau conduit à l'équilibre :

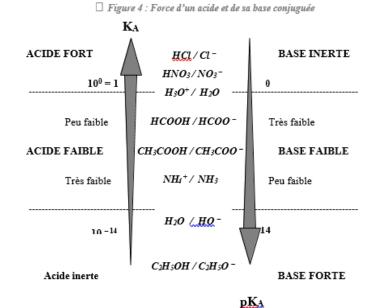
On associe à cet équilibre une grandeur sans dimension nommée constante d'acidité du couple AH/A⁻ et définie par la relation :

Comme la plupart du temps on a $C^0=1 \text{ mol.L}^{-1}$, on retiendra.

 $K_A = \frac{\left(\frac{[A^-]}{C^0} * \frac{[H_3 O^+]}{C^0}\right)}{\frac{[AH]}{C^0}}$

[.] en $mol \square L^{-1}$ K_A sans dimension C^0 : concentration normalisée standard

$$K_A = \frac{[A^-] \times [H_3 O^+]}{[AH]}$$


A noter:

☐ La constante d'acidité d'un couple acido-basique définit l'état d'équilibre de la réaction entre l'acide de ce couple et

☐ La valeur de cette constante est indépendante de l'état initial du système étudié. Elle ne dépend que de la force de l'acide.

 \square A chaque K_A on associe une grandeur logarithmique notée pK_A telle que :

$$pK_A = -log(K_A)$$

Ouestions:

a. Retrouver la relation donnant le K_A en fonction du pK_A .

b. L'acide méthanoïque a un pK_A de 3,7. Déterminer la valeur de sa constante d'acidité.

c. L'acide éthanoïque possède un pK_A de 4,8. Cet acide est-il plus fort que l'acide méthanoïque ?

d. D'après la figure 4, quel type de base est conjugué à un acide fort ?

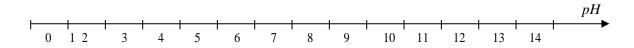
e. D'après la figure 4, quel type de base est conjugué à un acide faible ?

f. Justifier à l'aide de la figure 4 que la réaction d'une base forte sur l'eau est totale.

B/ Domaine de prédominance

1) Analyse mathématique :

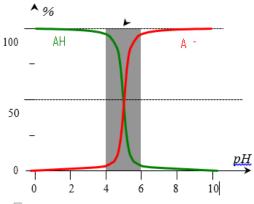
a. A partir des expressions du K_A et-du pK_A , montrer que l'on peut alors écrire :


$$pH = pK_A + \log \frac{[A^-]}{[AH]}$$

Rappels:

$$log (a \times b) = log(a) + log(b)$$

 $log (a/b) = log(a) - log(b)$
 $log(1) = 0$
 $log(x) < 0$ si $x < 1$
 $log(x) > 0$ si $x > 1$


- b. Quelle relation a-t-on entre $[A^-]$ et [AH] si le pH est égal au pK_A de l'acide ? Si $[A^-] > [AH]$? si $[A^-] < [AH]$?
- c. On considère une solution aqueuse d'acide éthanoïque ($pK_A = 4,8$). On modifie le pH par ajout d'ion oxonium ou hydroxyde. Indiquer sur le schéma ci-dessous qui,de la forme acide ou de la forme basique, prédomine en solution en fonction du pH.

2) **Définition**:

3) Diagramme de distribution

Il est aussi possible de montrer cette évolution par un **diagramme de distribution** qui donne le pourcentage relatif des 2 espèces en fonction du pH.

☐ Figure 5 : diagramme de distribution

II/ APPLICATIONS

A/ Indicateur coloré

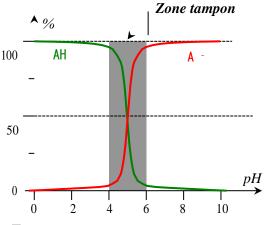
Un indicateur coloré est un couple acide/base dont les formes acide et basique n'ont pas la même

On peut le modéliser par l'écriture HInd/Ind-.

Selon le pH de la solution dans lequel il est présent, la couleur de la forme acide ou basique prédomine.

Lorsque le pH est proche du pK_A, aucune des deux espèces ne prédomine très nettement, et la couleur observée résulte de la présence des deux espèces.

Indicateur	Teinte acide	Zone de virage Teinte sensible	Teinte basique
Hélianthine	Rouge	3,1 4,4 Orange	Jaune
Rouge de méthyle	Rouge	4,2 6,2 Orange	Jaune
Bleu de bromothymol	Jaune	6,0 7,6 Vert	Bleu
Rouge de crésol	Jaune	7,2 8,8 Orange	Rouge
Phénolphtaléine	Incolore	8,2 10 Rose	Rouge violacé


L'intervalle de pH correspondant au passage de la couleur de l'acide à celle de la base est appelé de l'indicateur coloré.

B/Les solutions tampons

La présence simultanée de l'espèce AH et de l'espèce A⁻ en solution aqueuse empêche le pH de varier sensiblement lors d'un **ajout modéré** d'acide fort ou de base forte, ou encore lors d'une **dilution**.

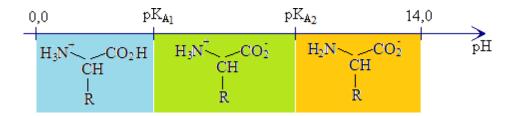
C'est pour cette raison qu'une telle solution est qualifiée de

En d'autres termes, si le pH d'une solution est tel que l'espèce AH et l'espèce A $^-$ ont des concentrations non négligeables l'une par rapport à l'autre, on a une solution tampon.

☐ Figure 5 : diagramme de distribution

Exemple:

On considère un couple AH / A^- dont le pK_A vaut 5,0. Si le pH de la solution aqueuse contenant ces espèces estcompris entre 4,0 ($pK_A - 1$) et 6,0 ($pK_A + 1$), alors la solution est tampon.


Si le pH de la solution est supérieur à 6,0 ou inférieur à 4,0, une des deux espèces est devenue négligeable par rapport à l'autre et la solution n'est plus tampon.

Constitution et transformation de la matière

C/ Acide α-aminé

Les acides acide α-aminé sont des molécules très courantes dans le monde du vivant. Ils possèdent tous deux fonctions organiques qui leur donne des propriétés acido-basiques particulière :

- ➤ Un groupe carboxyle (couple (R-CH-NH₃⁺)-COOH/ (R-CH-NH₃⁺)-COO⁻, pK_{A1} voisin de 2).
- ➤ Un groupe amino (couple (R-CH-CO₂)-NH₃+/(R-CH-CO₂)-NH₂, pK_{A2} voisin de 10).

Exemple:

La leucine est l'acide α -aminé dont la chaîne latérale R est le groupe $-CH_2CH(CH_3)_2$. Les pK_A de cette espèce sont pK_{A1}=2,4 et pK_{A2}=9,6.

Ecrire la formule semi-développée de l'espèce majoritairement prédominante dans les deux cas suivants : pH=1,0 et pH=7,0.

D/ pH des milieux biologiques

Le contrôle du pH est fondamental pour les milieux biologiques, l'activité catalytique des protéines comme les enzymes est optimale dans des domaines de pH très restreins ; par exemple la trypsine fonctionne mieux à un pH proche de 8,0 comme dans l'intestin, alors que la pepsine agit mieux en milieu acide comme dans l'estomac.

Les liquides biologiques ont donc des pH maintenus constants grâce à des systèmes tampons. Par exemple le sang doit rester à un pH de 7,4 à 37°C.